Hash functions, program secrets and lattices

Giorgos Zirdelis

University of Maryland

giorgos@umd.edu

Talk outline

B Topic is lattice-based cryptography
o Hash Functions
o Program Obfuscation

© coo

@ Common theme: Quest for "universal” tools

Cryptographic Hash Functions

Hash functions

» Hash functions are used everywhere in cryptography

e Both in theory and practice
e Hash-and-Sign, Merkle tree, B, ..

o SHA-2, SHA-3 o Discrete Log o Isogeny-based
o Factoring o Elliptic Curves o Lattice-based

Hash functions

» Hash functions are used everywhere in cryptography

e Both in theory and practice
e Hash-and-Sign, Merkle tree, B, ..

o SHA-2, SHA-3 o Discrete Log o Isogeny-based

o Factoring o Elliptic Curves o Lattice-based

Goal: Given h, find x # 2’ s.t. h(z) = h(a')

Security: such x, 2" always exist but are hard to find

Hash functions

» Hash functions are used everywhere in cryptography

e Both in theory and practice
e Hash-and-Sign, Merkle tree, B, ..

o SHA-2, SHA-3 o Discrete Log o Isogeny-based
o Factoring o Elliptic Curves o Lattice-based

Goal: Given h, find x # 2’ s.t. h(z) = h(a')

Security: such x, 2" always exist but are hard to find

» Which hash function is most secure?

Provably answer this, at least in theory?

Most secure?

» What does most secure mean for some h?

Most secure?

» What does most secure mean for some h?

' 4
» Collisions for h must be as hard, as in any other h

Most secure?

» What does most secure mean for some h?
v
» Collisions for h must be as hard, as in any other h

> 4
» Implies a reduction: Yh, h < h
e for fixed security parameter

Y V2
® h inherits hardness from all h

Most secure?

What does most secure mean for some h?

v

v

' 4
Collisions for h must be as hard, as in any other h

"
Implies a reduction: Vh, h < h

| 4
e for fixed security parameter
'Y
® 1 inherits hardness from all h
» What are the reduction steps?

. W
Reduction steps »—c, — h

Hash function h

. W
Reduction steps »—c, — h

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)
e h — Ch

- Ve
Reduction steps »—c, — h

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)
e h — Ch

'

2. Reduce C}, to a hash function A
'Y
e O, < h

1
e Find collisions in h = Find collisions in C},Vh

- Ve
Reduction steps »—c, — h

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)
e h — Ch

'

2. Reduce C}, to a hash function A
'Y
e O, < h

1
e Find collisions in h = Find collisions in C},Vh

W
3. Declare h as the most secure (WC/AVG)

- Ve
Reduction steps »—c, — h

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)
e h — Ch

' %
2. Reduce C}, to a hash function A
i
e Ch<h
4
e Find collisions in h = Find collisions in C},Vh

W
3. Declare h as the most secure (WC/AVG)

%
What should h be?

In the 90s...

W
» The question about h was asked in [Papadimitriou '94]

...in the broader context of total problems (TFNP)

b 4
» |t remained open, what h to use...

...it all starts with the pigeonhole principle

In the 90s...

W
» The question about h was asked in [Papadimitriou '94]

...in the broader context of total problems (TFNP)
'

> It remained open, what A to use...

...it all starts with the pigeonhole principle

» We use it to define hash functions, prior to the reduction

The pigeonhole principle — a reminder

Any function h : [n] — [m] with n > m must have collisions

i.e. when |domain| > |range|

[n]={1,...,n}

Define hash functions

> Define the set of all (poly-size) functions h : [n] — [m], with n > m

Define hash functions

> Define the set of all (poly-size) functions h : [n] — [m], with n > m

» i.e. all functions that compress their input

e for convenience, we refer to these as hash functions

Define hash functions

> Define the set of all (poly-size) functions h : [n] — [m], with n > m

» i.e. all functions that compress their input

e for convenience, we refer to these as hash functions

» compress input — collisions exist % — goal: find collisions

Define hash functions

Define the set of all (poly-size) functions h : [n] — [m], with n > m

v

v

i.e. all functions that compress their input

e for convenience, we refer to these as hash functions

» compress input — collisions exist % — goal: find collisions

v

This set is the union of:

1. Cryptographic hash functions (e.g. SHA-3, SIS)
2. Non-cryptographic hash functions (e.g. pairwise independence)

Represent /. — (step 1) — why circuits?

Want a universal way to represent any (poly-size) hash function h

(i.e. convenient to work with)

Represent /. — (step 1) — why circuits?

Want a universal way to represent any (poly-size) hash function h

(i.e. convenient to work with)

» Be agnostic of groups, rings, fields, distributions, keys*, ...

> Represent every hash function h, in the same way

Represent /. — (step 1) — why circuits?

Want a universal way to represent any (poly-size) hash function h

(i.e. convenient to work with)

» Be agnostic of groups, rings, fields, distributions, keys*, ...
> Represent every hash function h, in the same way

» Use the (poly-size) boolean circuit C, that implements h

Cp: {0,1}" = {0,1}™ withn>m SIS

n, m depend on the security parameter

* keys are hardcoded in C},, i.e. C}, essentially

A subtle point

» By definition, {C}} includes all (poly-size) hash function circuits that
map {0,1}" — {0,1}™ with n > m

» Even for hash functions we might have not discovered yet!

10

A subtle point

» By definition, {C}} includes all (poly-size) hash function circuits that
map {0,1}" — {0,1}™ with n > m

» Even for hash functions we might have not discovered yet!

Note: we do not have to enumerate or explicitly know this set

10

The question in [Pap94] — (step 2)

) 4
» Question: Reduce C}, to a "natural” hash function h?

What is "natural” & why?

11

The question in [Pap94] — (step 2)

) 4
» Question: Reduce C}, to a "natural” hash function h?

What is "natural” & why?

» Circuits vs "everyday” problems
o NP-Hard: Circuit-SAT <, Subset-Sum, Clique, Vertex Cover, TSP

i.e. "natural” problems

11

The question in [Pap94] — (step 2)

) 4
» Question: Reduce C}, to a "natural” hash function h?

What is "natural” & why?

» Circuits vs "everyday” problems
o NP-Hard: Circuit-SAT <, Subset-Sum, Clique, Vertex Cover, TSP

i.e. "natural” problems

(3

» Under every C}, maybe a "natural” h like the Short Integer
Solutions (SIS) is hidden...

11

The question in [Pap94] — (step 2)

W
Question: Reduce C}, to a "natural” hash function h?

v

What is "natural” & why?

v

Circuits vs "everyday” problems
o NP-Hard: Circuit-SAT <, Subset-Sum, Clique, Vertex Cover, TSP

i.e. "natural” problems

(3

» Under every C}, maybe a "natural” h like the Short Integer
Solutions (SIS) is hidden...

v

This would imply:

Finding collisions in any C', reduces to finding Short Integer Solutions!

11

Goal in summary

h — C, —
~————
step 1 — easy

12

Goal in summary

4

h—>gh—>h

7

TV
step 2 — reduction

13

Our results (almost there)

We reduce any hash function to an almost lattice problem,

the constrained Short Integer Solutions problem (constrained-SIS)
o Sotiraki-Zampetakis—Z FOCS'18
o We believe the answer to be a lattice problem (ongoing work)
= lattice-based hash functions are the most secure
'Y
o We show the first h

o Solves open problem from [Pap94]
o Our reduction is worst-case

next: SIS reminder

14

The SIS problem |[Ajtai '96, Micciancio-Regev '04]

» Given A + ZZIxn with n > mlogq (s.t. collisions exist)

» Find distinct x1,x2 € {0,1}" s.t.

15

The SIS problem |[Ajtai '96, Micciancio-Regev '04]

» Given A + ZZIxn with n > mlogq (s.t. collisions exist)

» Find distinct x1,x2 € {0,1}" s.t.

A x| = A ‘I x2 | (mod q)

15

The SIS problem |[Ajtai '96, Micciancio-Regev '04]

» Given A + ZZIxn with n > mlogq (s.t. collisions exist)

» Find distinct x1,x2 € {0,1}" s.t.

A x| = A ‘I x2 | (mod q)

...implies short (x1 — x2) € {0, £1}" s.t. A(x1 —x2) =0

15

The constrained-SIS problem

» Given A € Z"™" and semi-structured G € Z3*" with
n > (m+d)logq

16

The constrained-SIS problem

» Given A € Z"™" and semi-structured G € Z3*" with

n > (m+d)logq

» Find distinct x1,x2 € {0,1}" s.t.

.| Xo

(mod gq)

16

The constrained-SIS problem

» Given A € Z"™" and semi-structured G € Z3*" with
n > (m+d)logq
> Find distinct %1, %3 € {0, 1}" stt.

A x| = A | X9 (mod q)

G xp|= G | %o |= (mod q)

16

constrained-SIS vs SIS

constrained-SIS (WC) SIS (AVG)

A is arbitrary ‘ A is uniformly random
G is semi-structured

x1,%x2 € {0,1}" s.t. x1,x%2 € {0,1}" s.t.
Ax; = Axs and Gx; = 0 = Gxo Ax; = Axo

17

constrained-SIS vs SIS

constrained-SIS (WC) SIS (AVG)
A is arbitrary A is uniformly random

G is semi-structured -
x1,%x2 € {0,1}" s.t. x1,x%2 € {0,1}" s.t.

Ax; = Axs and Gx; = 0 = Gxo Ax; = Axo

o unclear how to sample o can sample keys
most secure” keys o unclear if SIS is the most secure
h

17

constrained-SIS vs SIS

constrained-SIS (WC) SIS (AVG)
A is arbitrary A is uniformly random

G is semi-structured -
x1,%x2 € {0,1}" s.t. x1,x%2 € {0,1}" s.t.

Ax; = Axs and Gx; = 0 = Gxo Ax; = Axo

o unclear how to sample o can sample keys
most secure” keys o unclear if SIS is the most secure
h

Goal: (aka reduction)

1. show that constrained-SIS is a hash function

2. reduce any hash function to constrained-SIS

17

Goal: constrained-SIS is a hash function — ptl

Goal:

1. show that constrained-SIS = (A, G) is a hash function

18

Goal: constrained-SIS is a hash function — ptl

Goal:

1. show that constrained-SIS = (A, G) is a hash function

» A and G must compress their common input

18

Goal: constrained-SIS is a hash function — ptl

Goal:

1. show that constrained-SIS = (A, G) is a hash function

» A and G must compress their common input

» A is compressing, choice of params v

18

Goal: constrained-SIS is a hash function — ptl

Goal:

1. show that constrained-SIS = (A, G) is a hash function

» A and G must compress their common input
» A is compressing, choice of params v

» G is compressing, choice of params...

18

Goal: constrained-SIS is a hash function — ptl

Goal:

1. show that constrained-SIS = (A, G) is a hash function

v

A and G must compress their common input

v

A is compressing, choice of params v

v

G is compressing, choice of params...
...but why should Gx = 07

v

18

Goal: constrained-SIS is a hash function — ptl

Goal:

1. show that constrained-SIS = (A, G) is a hash function

v

A and G must compress their common input

v

A is compressing, choice of params v

v

G is compressing, choice of params...
...but why should Gx = 07
e G has structure v/

v

18

The G in constrained-SIS

log q
1214 2° x % * * * Kk K * | *x x % *
0 B4 coo B * Kk * | ok ox * *
G = .
0 0 124 oo B * x % *
n—dlogq

» G similar to the gadget matrix from [Micciancio-Peikert '12]

19

The G in constrained-SIS

log q

B4k ooo I

*x ok ke ok

Il Bl coo ZP

* ok ke
* * K -

2£

*x k& *

* Kk K *

* k& *
n—dlog q

» G similar to the gadget matrix from [Micciancio-Peikert '12]

» Gx = 0 can always be satisfied by some x € {0,1}"

19

The G in constrained-SIS

log q

B4k ooo I

*x ok ke ok

Il Bl coo ZP

* ok ke
* * K -

2£

\
* * *x *
*x *x Kk * .
{0,1}
* *x * *
n—dlogg {0,1}

» G similar to the gadget matrix from [Micciancio-Peikert '12]

» Gx = 0 can always be satisfied by some x € {0,1}"

e choose last (n — dlogq) bits of x arbitrarily (last row)...

19

The G in constrained-SIS

log q

B4k ooo I

*x ok ke ok

Il Bl coo ZP

* ok ke
* * K -

2£

\
* * *x *
*x *x Kk * .
{0,1}
* *x * *
n—dlogg {0,1}

» G similar to the gadget matrix from [Micciancio-Peikert '12]

» Gx = 0 can always be satisfied by some x € {0,1}"

e choose last (n — dlogq) bits of x arbitrarily (last row)...

° ...Gx:0<:>1x1+21’2+4w4+---+2zm2z :f

19

The G in constrained-SIS

log q

B4k ooo I

*x ok ke ok

Il Bl coo ZP

* ok ke
* * K -

2£

\
* * *x *
*x *x Kk * .
{0,1}
* *x * *
n—dlogg {0,1}

» G similar to the gadget matrix from [Micciancio-Peikert '12]

» Gx = 0 can always be satisfied by some x € {0,1}"

e choose last (n — dlogq) bits of x arbitrarily (last row)...

° ...Gx:0<:>1x1+21’2+4w4+---+2zm2z :f

e rest of x is uniquely determined using

backwards substitution & binary decomposition

19

0
Il
q
=
—
Il
N
o
Il
-
=
=
3
9
£
c
X
)
e
S

* % X X X X X ¥ ¥

)

1 2 413 0 6|5 6 2
0 0 0|1 2 4|1 0 3|2
0 0 0|0 O O1 2 4

(

20

an example with d =3,n = 10,q = 8

*k

*

k
1 2 4|3 0 6|5 6 2|1 : 0
00 0[1 2 4/1 0 3|2 I:o (mod 8)
00 0[000O0[1 2 4|1 0

g

s

Z9

1

binary decomposition (last row)

loa7+2-28+4-29g+(1-1)=0 (mod 8) = x7 =g =29 =1

21

an example with d =3,n = 10,q = 8

*

*

*
1 2 43 0 6|5 6 21 o 0
00 0[1 2 41 0 3|2 izzo (mod 8)
00 0[00O0[1 2 4|1 | 0

1

1

1

binary decomposition (2nd row)

l-zg+2-25+4-26+(1+2+4+1)=0 (mod 8)
—_—
back substitution

22

an example with d =3,n = 10,q = 8

T

)

X3

1
1 2 4|3 0 6[5 6 21 0 0
00 0[1 2 4[1 0 3|2 o =10 (mod 8)
00 0[00O0[1 2 4|1) 0

1

1

1

binary decomposition (1st row)

1-214+2-29+4-235+ 17 =0 (mod 8)

back substitution

23

0
Il
q
=
—
Il
N
o
Il
-
=
=
3
9
£
c
X
)
e
S

o H - O O = =

)

1 2 413 0 6|5 6 2
0 0 0|1 2 4|1 0 3|2
0 0 0|0 O O1 2 4

(

24

Goal: constrained-SIS is a hash function — pt2

» 2n~dlogd different values of x can satisfy Gx = 0

» same X are mapped as: x — Ax

25

Goal: constrained-SIS is a hash function — pt2

» 2n~dlogd different values of x can satisfy Gx = 0
» same X are mapped as: x — Ax

» range of x— Ax is g™

25

Goal: constrained-SIS is a hash function — pt2

» 2n~dlogd different values of x can satisfy Gx = 0

» same X are mapped as: x — Ax

m

v

range of x+— Ax isgq

v

n—dl
on dlog q > q'm

25

Goal: constrained-SIS is a hash function — pt2

» 2n~dlogd different values of x can satisfy Gx = 0
» same X are mapped as: x — Ax

» range of x— Ax is g™

> on—dloed 5 gm - enough x to have collisions in A

i.e. |domain| > |range|

25

Goal: constrained-SIS is a hash func

» 2n~dlogd different values of x can satisfy Gx = 0
» same X are mapped as: x — Ax

» range of x— Ax is g™

> on—dloed 5 gm - enough x to have collisions in A

i.e. |domain| > |range|

constrained-SIS is a hash function v/

next: C}, < constrained-SIS

25

Goal: (), < constrained-SIS

Reduce C}, to constrained-SIS

26

Goal: (), < constrained-SIS

Reduce C}, to constrained-SIS
Goal: Construct A, G out of (Y},

26

Goal: (), < constrained-SIS

Reduce C}, to constrained-SIS
Goal: Construct A, G out of (Y},
we start with G

26

C), < constrained-SIS — the G pt

» Embed C} in G using OR and XOR gates

e Circuit gates in C}), — Linear equations in G

27

C), < constrained-SIS — the G pt

» Embed C} in G using OR and XOR gates

e Circuit gates in C}), — Linear equations in G

OR::y,z 11@12<:>—:v1—w2:0(m0d4)
XOR: :y, z:ml/\x2<:>7:z:17:z:2:0 (mod 4)

27

C), < constrained-SIS — the G pt

» Embed C} in G using OR and XOR gates

e Circuit gates in C}), — Linear equations in G

OR: :y, z:zl@wgﬁ—xl—wgzo (mod 4)
XOR: :y, z:ml/\x2<:>7:z:17:z:2:0 (mod 4)

output gate output wires 0 0 0
0 intermediate gate intermediate wires 0 0
G = .
0 0 input gate input wires

27

, < constrained-SIS — the G pt

» Embed C} in G using OR and XOR gates

e Circuit gates in C}), — Linear equations in G

OR: :y, z:zl@wgﬁ—xl—wgzo (mod 4)
XOR: :y, z:ml/\x2<:>7:z:17:z:2:0 (mod 4)

output gate output wires 0 0 0
0 intermediate gate intermediate wires 0 0
G =
0 0 S input gate input wires

» Gx; = 0 = Gx; represents evaluation of C,(21) and Ch(z2)
e x contains evaluation of C}(z) gate-by-gate

e x = (output, intermediate steps, input)”

27

C), < constrained-SIS — the A pt

A extracts the output of C),(z) from x

28

C), < constrained-SIS — the A pt

A extracts the output of C),(z) from x

> Set A = (1,0,0)

28

C), < constrained-SIS — the A pt

A extracts the output of C),(z) from x

> Set A = (1,0,0)

» x = (output, intermediate steps, input)?

28

C), < constrained-SIS — the A pt

A extracts the output of C),(z) from x

» Set A =(1,0,0)
» x = (output, intermediate steps, input)?

» Ax =output = Ax = Cj(x)

28

C), < constrained-SIS — the A pt

A extracts the output of C),(z) from x
> Set A = (1,0,0)
» x = (output, intermediate steps, input)?
» Ax =output = Ax = Cj(x)

> Ax; = Axy implies Cp(x1) = Cp(z2) = a collision for h v

28

C), < constrained-SIS — the A pt

A extracts the output of C),(z) from x

v

Set A = (1,0,0)

x = (output, intermediate steps, input

v

)T

» Ax =output = Ax = Cj(x)

v

Ax; = Axy implies Cp(x1) = Cp(z2) = a collision for h v

Find Short Integer Solutions for A,G = Find collisions in constrained-SIS

—> Find collision in C}, for any h
— W

28

Series of reductions

Qur result shows that:

SIS, LWE, SIVP, GapSVP, Minkowksi, n-SVP, SHA, DLog, . .. < constrained—SIS

These problems can be solved by finding collisions

29

The post-quantum quest

A strong post-quantum guarantee for h ?

[

30

The post-quantum quest

A strong post-quantum guarantee for h ?

[

A quantum speedup for constrained-SIS

<= quantum speedup for finding collisions, in general

30

The post-quantum quest

A strong post-quantum guarantee for h ?

[

A quantum speedup for constrained-SIS

<= quantum speedup for finding collisions, in general

"Morally”, a quantum speedup for lattice problems(?)

<= quantum speedup for finding collisions, in general

30

The post-quantum quest

A strong post-quantum guarantee for h ?

[

A quantum speedup for constrained-SIS

<= quantum speedup for finding collisions, in general

"Morally”, a quantum speedup for lattice problems(?)

<= quantum speedup for finding collisions, in general

This would be a strong implication. Should we expect this?

30

The post-quantum quest

A strong post-quantum guarantee for h ?

[

A quantum speedup for constrained-SIS

<= quantum speedup for finding collisions, in general

"Morally”, a quantum speedup for lattice problems(?)

<= quantum speedup for finding collisions, in general

This would be a strong implication. Should we expect this?

This motivates the open problem section

30

Open problems

YA worst-to-average case reduction from constrained-SIS to itself?

4
o Conjecture for h: A - §, G < semi-random (random *)
experiments?

31

Open problems

YA worst-to-average case reduction from constrained-SIS to itself?
iy
o Conjecture for h: A - §, G < semi-random (random *)
experiments?
» approx-SVP/CVP equivalent to constrained-SIS?

e approx-SVP/CVP are fundamental lattice problems
e Minkowski short vectors & pigeonhole principle

31

Open problems

YA worst-to-average case reduction from constrained-SIS to itself?
1
o Conjecture for h: A - §, G < semi-random (random *)
experiments?
» approx-SVP/CVP equivalent to constrained-SIS?

e approx-SVP/CVP are fundamental lattice problems
e Minkowski short vectors & pigeonhole principle

» Direct reduction of specific hash functions to lattice problems?

e SHA < approx-SVP? — provable security level?

31

Open problems

YA worst-to-average case reduction from constrained-SIS to itself?
1
o Conjecture for h: A - §, G < semi-random (random *)
experiments?
» approx-SVP/CVP equivalent to constrained-SIS?

e approx-SVP/CVP are fundamental lattice problems
e Minkowski short vectors & pigeonhole principle

» Direct reduction of specific hash functions to lattice problems?
e SHA < approx-SVP? — provable security level?
! Structured lattices in this framework? (e.g. ideal lattices)

W understand potential & limitations of structured lattices

@5 on structured lattices: more evidence for hardness, the better we sleep

31

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

32

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

» The handshake lemma. Given undirected graph G(V, E):

Z deg(v) = 2| E]

veV

32

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

» The handshake lemma. Given undirected graph G(V, E):

Z deg(v) = 2| E]

veV

» A vertex with odd degree, implies another vertex with odd degree

32

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

» The handshake lemma. Given undirected graph G(V, E):

Z deg(v) = 2| E]

veV

» A vertex with odd degree, implies another vertex with odd degree

» Hardness in finding this other odd degree vertex

32

Complexity of factoring integers? in PPA [Jersbek '16]

“W® o co- NP/

» How low can Factoring go?
» Factoring < approx-SVP/CVP?

33

next: obfuscation!

34

modern crypto (we use it everyday)

O L Y #tGCGdédw@0OBO O O AR =| A

35

modern crypto (more than this: foundations)

O L Y #tGCGdédw@0OBO O O AR =| A

A non-exhaustive list:

v

Public-key encryption — (pk,sk) e.g. RSA

v

Zero Knowledge Proofs

v

Multiparty Computation

v

Attribute-Based Encryption

v

Fully-Homomorphic Encryption

35

modern Crypto (a natural question)

O L Y #tGCGdédw@0OBO O O AR =| A

A non-exhaustive list:

v

Public-key encryption — (pk,sk) e.g. RSA

v

Zero Knowledge Proofs

v

Multiparty Computation

v

Attribute-Based Encryption

v

Fully-Homomorphic Encryption

Super-tool to build crypto tools?

35

modern Crypto (the answer: yes)

O L Y #tGCGdédw@0OBO O O AR =| A

A non-exhaustive list:

» Public-key encryption — (pk,sk) e.g. RSA

» Zero Knowledge Proofs

v

Multiparty Computation

v

Attribute-Based Encryption

v

Fully-Homomorphic Encryption

Super-tool to build crypto tools?
/> Program Obfuscation

35

Program Obfuscation

Main character: programs

Goal: hide program secrets

36

What is obfuscation? (main character)

» An obfuscator is a program compiler

r—| P — P(x)

37

What is obfuscation? (main character — obf)

» An obfuscator is a program compiler

r—| P — P(x)

l

(obfuscator] (&)

37

What is obfuscation? (obf — code)

» An obfuscator is a program compiler

r—| P — P(x)

l

(i) B2

=2
l
e}
l
o]
&,

37

(code hides secrets)

» An obfuscator is a program compiler

r — P

l

— P(x)

(obfuscator] (&)

!

=2
l
e}

P hides implementation details of P

— P(x)

e.g. constants, variable values, procedures

37

Virtual Black-Box (VBB) security [Hadoo, BGI*01]

» An obfuscator is a program compiler

r—| P — P(x)

l

(obfuscator] (&)

!

VBB security: only learn (z, P(x))

38

Obfuscation in practice

o Heuristic solutions (obfuscation as a product)

o International C code obfuscation (since 1984)

39

Obfuscation in practice

o Heuristic solutions (obfuscation as a product)

o International C code obfuscation (since 1984)

» Goal: prove security based on a hard math problem

o e.g. Lattice problems

39

Does VBB obfuscation exist?

Too good to be true?

40

Does VBB obfuscation exist?

» VBB obfuscation is impossible in the general case @

40

Does VBB obfuscation exist?

77

» VBB obfuscation is impossible in the general case ©

40

Does VBB obfuscation exist?

» VBB obfuscation is impossible in the general case

» There is a program P we cannot VBB obfuscate

40

Does VBB obfuscation exist?

» VBB obfuscation is impossible in the general case
» There is a program P we cannot VBB obfuscate

» ...and a few programs that can be VBB obfuscated

40

Does VBB obfuscation ex

» VBB obfuscation is impossible in the general case
» There is a program P we cannot VBB obfuscate

» ...and a few programs that can be VBB obfuscated

o simple programs that predate our work
[Can97, Wee05, CD08, CRV10, BVWW16, Zhal6]

point functions, hyperplanes, conjunctions

40

Does VBB obfuscation ex

» VBB obfuscation is impossible in the general case
» There is a program P we cannot VBB obfuscate

» ...and a few programs that can be VBB obfuscated

o simple programs that predate our work
[Can97, Wee05, CD08, CRV10, BVWW16, Zhal6]

point functions, hyperplanes, conjunctions

© Can we obfuscate more programs @

40

Our results

» Wichs-Z FOCS'17
concurrent/independent GKW'17

o Distribution-VBB obfuscate a large and expressive family of
programs

o Most general result so far, provably secure under the
Learning-with-Errors assumption

41

Compute-and-Compare programs (definition)

params: f,y, m

42

Compute-and-Compare programs (input)

flz)=y

oz
params: f,y, m

42

Compute-and-Compare programs (output)

m

_v
- fla)Zy y

params: f,y, m

42

Compute-and-Compare programs (output)

NEs

o &

= i

params: f,y, m N
=, 1

42

CC obfuscation & security
m

OEY /
\

oz
params: f,y, m

IS)EYS STl simulation security when y is random given f,m
Obfuscation hides params: f,y,m

L

43

Evasive programs

» if y is random given f,m...
» ...then for most z = f(z) #y
» why bother then?

44

Why obfuscate evasive programs?

Two groups of users

Can predict y Cannot predict y
Correctness is meaningful Correctness, not meaningful
Security, not meaningful Security is meaningful

45

Applications

New applications @

» Hide the access policy: upgrade Attribute-based Encryption to
Predicate Encryption

o re-use existing ABE keys (modular approach)
» Upgrade Witness Encryption to null iO

» Private authentication using biometric data

» Obfuscate conjunctions under LWE

46

Post-quantum applications

some recent work @

» Post-Quantum Multi-Party Computation
[ABGKM, EUROCRYPT '21]

» Post-Quantum Zero-Knowledge in Constant Rounds
[Bitansky-Shmueli, STOC '20]

» Weak Zero-Knowledge
[Bitansky-Khurana-Paneth, STOC '19]

» Optimal Traitor-Tracing
[CVWWW, TCC '18]

optimized construction [GVW'18]
perfect correctness [GKVW'20]

a7

On circular security

Encrypt your own secret key: Proofs and Heuristics

48

A fundamental question [GM’84]

» |s Enc(pk, sk;) always secure?

o bit-by-bit encryption of msg = sk

» We give a negative answer @

o public-key bit-by-bit CPA secure — circular insecure
(strong/non-pq assumptions [Rot13, KRW15])

> We refute a Random-Oracle heuristic for security of Enc(pk, sk;)

o the only heuristic transformation known

» Why investigate this type of security?

49

A fundamental question [GM’84]

» |s Enc(pk, sk;) always secure?

o bit-by-bit encryption of msg = sk

» We give a negative answer @

o public-key bit-by-bit CPA secure — circular insecure
(strong/non-pq assumptions [Rot13, KRW15])

> We refute a Random-Oracle heuristic for security of Enc(pk, sk;)

o the only heuristic transformation known

» Why investigate this type of security?

o Fundamental question
o Recently in the news! (iO candidates)
=> Fully-Homomorphic Encryption (bootstrapping)

49

Can Random Oracles help?

» Random Oracles (RO) are used both in theory and practice

e Publicly accessible gigantic source of randomness
e i.e. RO(z) = random

» In practice, replacing RO = SHA-2/SHA-3

» In theory, replacing RO = it's complicated

50

Can Random Oracles really help?

Power of RO &6

» Transform any IND-CPA scheme to a circular secure one [BRS03]

» Encro(pk,m) = Enc(pk,r), RO(r) ®m

51

Can Random Oracles really help?

Power of RO &6

» Transform any IND-CPA scheme to a circular secure one [BRS03]

» Encro(pk,m) = Enc(pk,r), RO(r) ®m

Power of obfuscation 83

» We construct an IND-CPA scheme that cannot be upgraded as
above...

...no matter which hash function is used to implement RO

51

Circular insecurity: sem — circ-insec

Assume bit encryption

secret key: Dec(sk,-) public key: Enc(pk,)

52

Circular insecurity: sem — circ-insec

Assume bit encryption

secret key: Dec(sk,-) public key: Enc(pk,)

y<—$

> sk’ — (sk,y)

52

Circular insecurity: sem — circ-insec
Assume bit encryption

secret key: Dec(sk,-)

y<—$

> sk’ — (sk,y)

public key: Enc(pk,)

Decek(-) o y

params: sk, y, sk

» pk’ — (pk, Obf)

52

Circular insecurity: sem — circ-insec
Assume bit encryption

secret key: Dec(sk,-)

y<—$

> sk’ — (sk,y)

public key: Enc(pk,)

Decek(-) o y

params: sk, y, sk

» pk’ — (pk, Obf)
» y indep of sk = semantic

security

52

Circular insecurity: sem — circ-insec
Assume bit encryption

secret key: Dec(sk,-)

y<—$

> sk’ — (sk,y)

public key: Enc(pk,)

Decek(-) o y

Enco(y) —
params: sk, y, sk

— sk

» pk’ — (pk, Obf)

» y indep of sk = semantic

security

52

Circular insecurity: sem — circ-insec

Assume bit encryption

secret key: Dec(sk,-)

y<—$

> sk’ — (sk,y)

public key: Enc(pk,)

Decek(-) o y
Encek(y) —

params: sk, y, sk

» pk’ — (pk, Obf)

» y indep of sk = semantic
security

()

— sk

¢ recover sk = break security!

52

Random Oracles: real vs ideal

» GKW'’17 shows similar result for Fujisaki-Okamoto
» Caution: RO Model — Standard Model (SHA-3, ...)

» |deally, we wouldn't need RO

e comparable efficiency without RO?

53

is obfuscation a success story?

54

is obfuscation a success story?

» "relaxed” form of obfuscation =
almost all crypto afs

» indistinguishability Obfuscation

» i0 most probably exists as of
2021 (non-pq)! [..., JLS'21, ..]

» other new constructions involve
new circular security definitions

54

is obfuscation a success story?

tales of iO

> "relaxed” form of obfuscation = » Cryptographic hardness of NASH

almost all crypto afs equilibria [AKV’'05, BPR'15]
» indistinguishability Obfuscation » 2-Round Multiparty Computation
» i0 most probably exists as of [GGHR'14, GP'15]

2021 (non-pq)! [..., JLS'21, ..] » Program Watermarking [CHNVW
» other new constructions involve '16]

new circular security definitions o Quach-Wichs-Z TCC'18

54

is obfuscation a success story?

tales of iO

> "relaxed” form of obfuscation = » Cryptographic hardness of NASH

almost all crypto afs equilibria [AKV’'05, BPR'15]
» indistinguishability Obfuscation » 2-Round Multiparty Computation
» i0 most probably exists as of [GGHR'14, GP'15]

2021 (non-pq)! [..., JLS'21, ..] » Program Watermarking [CHNVW
» other new constructions involve '16]

new circular security definitions o Quach-Wichs-Z TCC'18

ab+) | ~
b 4

54

Recent work — future post-quantum directions

» Adaptive prefix encryption under LWE (Z '21)

e prefix enc = original Hierarchical IBE
e algebraic instead of bb IBE use — focus on params
® ...but "really adaptive” post-quantum HIBE still open (EUROCRYPT
'10 [ABB10, CHKP10])
e pairings superior to lattices

55

Recent work — future post-quantum directions

» Adaptive prefix encryption under LWE (Z '21)

e prefix enc = original Hierarchical IBE
e algebraic instead of bb IBE use — focus on params
® ...but "really adaptive” post-quantum HIBE still open (EUROCRYPT
'10 [ABB10, CHKP10])
e pairings superior to lattices

» (Zero-Knowledge) Proofs, Obfuscation (iO), FHE

e very active for post-quantum — theory & practice

55

Recent work — future post-quantum directions

» Adaptive prefix encryption under LWE (Z '21)
e prefix enc = original Hierarchical IBE
e algebraic instead of bb IBE use — focus on params
® ...but "really adaptive” post-quantum HIBE still open (EUROCRYPT
'10 [ABB10, CHKP10])
e pairings superior to lattices
» (Zero-Knowledge) Proofs, Obfuscation (iO), FHE
e very active for post-quantum — theory & practice
% Structured lattices: new techniques/algorithms?

e efficient ZK — new ideas

55

Recent work — future post-quantum directions

» Adaptive prefix encryption under LWE (Z '21)
e prefix enc = original Hierarchical IBE
e algebraic instead of bb IBE use — focus on params
® ...but "really adaptive” post-quantum HIBE still open (EUROCRYPT
'10 [ABB10, CHKP10])
e pairings superior to lattices
» (Zero-Knowledge) Proofs, Obfuscation (iO), FHE
e very active for post-quantum — theory & practice
% Structured lattices: new techniques/algorithms?

e efficient ZK — new ideas

» |IBE/ABE followed after PKE. Next primitive to _____ ?

55

Recent work — future post-quantum directions

» Adaptive prefix encryption under LWE (Z '21)
e prefix enc = original Hierarchical IBE
e algebraic instead of bb IBE use — focus on params
® ...but "really adaptive” post-quantum HIBE still open (EUROCRYPT
'10 [ABB10, CHKP10])
e pairings superior to lattices
» (Zero-Knowledge) Proofs, Obfuscation (iO), FHE
e very active for post-quantum — theory & practice
% Structured lattices: new techniques/algorithms?

e efficient ZK — new ideas
» |IBE/ABE followed after PKE. Next primitive to _____ ?
¥ LWR, LPN

55

1,0-

char
-3141[3141]; 314159 [31415] , _3141[31415] ;main) {register char
_3.141,%_3_1415,

3141592654 [3141
*_3__1415; register int
3.1415;%_3141592654=__314156=2,

do{_3_14159.

_314,_31415,__31415,%_31,
3141592654 [0] [3141592654
314=0,__31415++; for (_31415
_31415++) _31415[_3141]=_314159[_31415]
3_141=_3141592654+__3_1415
(_31415 = 3141-
_31415;_31415--

3_141
31415<(3,14-4)%__31415
53141 [+_314159=_3_14159
3_1415

+_.3141;for
__3.1415
L3141 ++
+=_314<<2

5.3.1415

if (1 (*_31+1))* _31 =_314 /
' __31415, 314 [_3141 314 %
Thank you ey BRI
°)+= %_3_1415 *_31;while (*
_3__1415 >: 31415/3141) =*
_3__1415 10, (=
)++; _314=_314 [_3141]; if (!
_3_14159 && = _3_1415) _3_14159
=1,__3_1415 = 3141-_31415;}if (
_314+(__31415 >>1) __31415)
while (++ * _3.14 141/314
)*_3_141- ;}while(_3_14159
) ; { char =* _3_14= "3.1415";
write((3,1), .3_14,__3_14
),(.3_14159 ++,4+_3_14159))+
3.1415926; } for (_31415 1;
_31415<3141~ _31416++) urite (
31415% 314-(3,14), 3141592654 [
31415 1+ "0123456789"
[3)+1)-_314;
,-3141592654))

,"314"
puts ((+_314159265.

314= *"3.141592"

6th International Obfuscated C Code Contest (1989)

